Search results for "semiclassical analysis"
showing 2 items of 2 documents
Analytic Bergman operators in the semiclassical limit
2018
Transposing the Berezin quantization into the setting of analytic microlocal analysis, we construct approximate semiclassical Bergman projections on weighted $L^2$ spaces with analytic weights, and show that their kernel functions admit an asymptotic expansion in the class of analytic symbols. As a corollary, we obtain new estimates for asymptotic expansions of the Bergman kernel on $\mathbb{C}^n$ and for high powers of ample holomorphic line bundles over compact complex manifolds.
Resonances for nonanalytic potentials
2009
We consider semiclassical Schr"odinger operators on $R^n$, with $C^infty$ potentials decaying polynomially at infinity. The usual theories of resonances do not apply in such a non-analytic framework. Here, under some additional conditions, we show that resonances are invariantly defined up to any power of their imaginary part. The theory is based on resolvent estimates for families of approximating distorted operators with potentials that are holomorphic in narrow complex sectors around $R^n$.